## JUSTIN D. SILVERMAN

NOW:
MEDICAL SCIENTIST TRAINING PROGRAM
COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
DUKE UNIVERSITY

SOON:
COLLEGE OF INFORMATION SCIENCE AND TECHNOLOGY
DEPARTMENT OF MEDICINE

## SCALABLE BAYESIAN MULTINOMIAL LOGISTICNORMAL MODELS FOR THE ANALYSIS OF SEQUENCE COUNT DATA

## DATA COLLECTION AND SAMPLE PROCESSING

Sample Collection and Storage




|  | Species 1 | Species 2 | Species 3 | Sp |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Cammin 0 | n1 | on | 70 |  |

Adapted from Hamady. et al., Nature Methods, 2008

## COMPOSITION: A CONTROVERSIAL TOPIC

## THE DATA IS "COMPOSITIONAL"

It's all relative: analyzing microbiome data as compositions
Gregory B. Gloor PhD ${ }^{\text {a }} \circ$ ®, Jia Rong Wu BSc ${ }^{\text {a }}$, Vera Pawlowsky-Glahn PhD ${ }^{\text {b }}$, Juan José Egozcue PhD ${ }^{\text {c }}$
Microbiome Datasets Are Compositional: And This Is Not Optional



## NO ITS NOT

Susan Holmes @SherlockpHolmes • 5 Apr 2018
Replying to @timtriche @samclifford and 2 others
Absolutely not, microbiome data are not compositional and those methods don't apply,although it does apply to geostat data and other situations when one has a whole of exactly the same size. In microbiome data you have to control for different amounts of bacteria.
2
て】 1
$\bigcirc 1$

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 Spı |  |
| :--- | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Comnin 0 | $n 1$ | $\circ$ | 72 |  |

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 | Spi |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Cammin 0 | $n 1$ | on | 72 |  |

Row Sums are known to be arbitrary

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 | Sp |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Cammin 0 | $n 1$ | on | 72 |  |

Row Sums are known to be arbitrary
Common practice is to "normalize"
(convert to percentages by dividing by row totals)

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 | Sp |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Cammin 0 | $n 1$ | on | 72 |  |

Row Sums are known to be arbitrary
Common practice is to "normalize"
(convert to percentages by dividing by row totals)

Percentages $=$ Relative Abundances $=$ Compositions

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 | Spi |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
| Cammin 0 | $n 1$ | on | 72 |  |

Row Sums are known to be arbitrary
Common practice is to "normalize"
(convert to percentages by dividing by row totals)

Percentages $=$ Relative Abundances $=$ Compositions

## $B+L+R=k$

And all Positive

## CHALLENGES OF COMPOSITION

|  | Species 1 | Species 2 | Species 3 | Sp |
| :---: | :---: | :---: | :---: | :---: |
| Sample 1 | 23 | 53 | 2 |  |
| Sample 2 | 69 | 64 | 70 |  |
| Sample 3 | 33 | 100 | 68 |  |
| Sample 4 | 5 | 63 | 57 |  |
| Sample 5 | 76 | 80 | 46 |  |
| Sample 6 | 58 | 7 | 37 |  |
| Sample 7 | 10 | 87 | 32 |  |
|  | ${ }^{\text {n1 LACTOOBACILLỦS }}$ |  |  |  |

Row Sums are known to be arbitrary
Common practice is to "normalize"
(convert to percentages by dividing by row totals)

Percentages $=$ Relative Abundances $=$ Compositions

## $B+L+R=k$ <br> And all Positive



RUMINOCOCCUS

## HOW DO YOU DEAL WITH COMPOSITION?



## HOW DO YOU DEAL WITH COMPOSITION?



ALR $(x, y)=\left(\log \frac{L}{R}, \log \frac{B}{R}\right)$
CLR $(x, y, z)=\left(\log \frac{L}{(L B R)^{1 / 3}}, \log \frac{B}{(L B R)^{1 / 3}}, \log \frac{R}{(L B R)^{1 / 3}}\right)$

## A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

$$
\log \frac{0}{x}=-\infty
$$

## A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

$$
\begin{aligned}
& \log \frac{0}{x}=-\infty \\
& \log \frac{x}{0} \ldots \text { Oh Shit... }
\end{aligned}
$$

## ZEROS AND COUNTING

## OTHER SIDE OF THE AISLE

## Susan Holmes

@SherlockpHolmes

Replying to @tpq__ @ledflyd and 3 others
Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

4 Mixture Models | Modern Statistics for Modern Biology目

The data is count data
A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

## ZEROS AND COUNTING

## OTHER SIDE OF THE AISLE

## Susan Holmes

Replying to @tpq_ @ledflyd and 3 others
Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

4 Mixture Models | Modern Statistics for Modern Biology
$\equiv$

The data is count data

> A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

Model Random Counting
(e.g., negative binomial or Poisson)

## ZEROS AND COUNTING

## OTHER SIDE OF THE AISLE

## Susan Holmes

@SherlockpHolmes

Replying to @tpq_ @ledflyd and 3 others
Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

4 Mixture Models | Modern Statistics for Modern Biology huber.embl.de

The data is count data

> A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

Model Random Counting
(e.g., negative binomial or Poisson)

Yet often models each taxa as independent.

## VIEWING AS RANDOM SAMPLING

Sample Collection and Storage



## DNA Extraction

PCR Amplification


RANDOM SAMPLING


RANDOM SAMPLING

## PROBLEM WITH MULTIVARIITE RANDOM SUBSAMPLING

System 1


## PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

System 1


## EXTRACTING MORE INFORMATION FROM COUNTS

| Samples | 1 | 2 |
| :---: | :---: | :---: |
| Taxa 1 | 40 | 0 |
| Taxa 2 | 0 | 0 |
| Taxa 3 | 100 | 1 |

## BAYESIAN MULTINOMIAL MODELS REFLECT INTUITION WE WANT



Data



Prior


## MULTINOMIAL-LOGISTIC NORMAL

$Y \sim \operatorname{Multinomial}(\pi)$
$\pi \sim \operatorname{Logistic} \operatorname{Normal}(\rho, \Xi)$

$Y \sim \operatorname{Multinomial}(\pi)$
$\pi=\operatorname{ILR}^{-1}(\eta)$
$\eta \sim \operatorname{Multivariate} \operatorname{Normal}(\mu, \Sigma)$
-Handles Zeros and Competition-to-becounted

- Allows positive and negative covariation between taxa
- Models Multiplicative Errors


## MODELING TIME-EVOLUTION



Addition of Technical Noise
True State with Biological Noise
Priors
$Y_{t} \sim \operatorname{Multinomial}\left(\pi_{t}\right)$
$\pi_{t}=\operatorname{ILR}^{-1}\left(\eta_{t}\right)$
$\eta_{t}=F_{t} \theta_{t}+v_{t}$
$v_{t} \sim N\left(0, V_{t}\right)$
$\theta_{t}=G_{t} \theta_{t-1}+\omega_{t}$
$\omega_{t} \sim N\left(0, W_{t}\right)$
$\theta_{0} \sim N\left(m_{0}, C_{0}\right)$
$V_{1}, \ldots, V_{T}, W_{1}, \ldots, W_{T} \sim p(\xi)$

## INFERENCE

## THE COMPUTATIONAL BOTTLENECK

10 Taxa with 650 Samples
As measured by Time to Effective Sample size of 2000

- Metropolis-within-Gibbs $\rightarrow$ >2 months
- Now on order of milliseconds to seconds.


## KEY IDEA Goal <br> 

## KEY IDEA Goal



## KEY IDEA Goal <br> 



## KEY IDEA Goal <br> 



## KEY IDEA

Goal


## KEY IDEA <br> Goal <br> 



## KEY IDEA Goal <br> 



Latent Matrix-T
Process
(LTP)
(1) I have found that a huge class of models have identical marginal forms
(2) I have found a highly accurate approximation for this marginal form
(3) These models often have conditionals that are easy
 to sample from.

# MARGINALLY LATENT MATRIX-T PROCESSES MODELS 

MARGINALLY LTP MODELS

## MATRIX NORMAL PROCESS

Matrix of
Observed Data (Real Valued)


## MATRIX T-PROCESS



Silverman JD, Roche K, et al. 2019. arXiv

## LATENT MATRIX-T PROCESS (LTP)

Multinomial

Matrix of Counts

$$
\begin{aligned}
Y & \sim f(\pi) \\
\pi & =\phi^{\text {e. }}(\eta) \\
\eta & \sim T(U, B, K, A)
\end{aligned}
$$

## AN EXAMPLE OF A MARGINALLY LTP MODEL

|  | $Y_{t} \sim \operatorname{Multinomial}\left(\pi_{t}\right)$ | Count Noise |
| :--- | :--- | :--- |
| Multinomial <br> Logistic Normal <br> Process | $\pi_{t}=\operatorname{lLR}^{-1}\left(\eta_{t}\right)$ |  |
|  | $\eta_{t} \sim N\left(M_{t}, \Sigma\right)$ |  |
|  | $M \sim N(0, \Sigma, \Gamma) \quad \Gamma_{t, s}=\operatorname{RBF}(\mathrm{t}, \mathrm{s}) \quad$ Smoothed State |  |
|  | $\Sigma \sim / W(\Xi, U) \quad$ Unknown Covariance Between Log-Ratios |  |

## FOR TIME-SERIES ANALYSIS










Synergistaceae


## A FEW MORE EXAMPLES

Generalized Multivariate
Dynamic Linear Models

$$
\begin{aligned}
Y & \sim f(\pi) \\
\pi & =\phi^{-1}(\eta) \\
\eta_{t}^{T} & =F_{t}^{T} \Theta_{t}+v_{t}^{T}, \quad v_{t} \sim N\left(0, \gamma_{t} \Sigma\right) \\
\Theta_{t} & =G_{t} \Theta_{t-1}+\Omega_{t}, \quad \Omega_{t} \sim N\left(0, W_{t}, \Sigma\right) \\
\Theta_{0} & \sim N\left(M_{0}, C_{0}, \Sigma\right) \\
\Sigma & \sim I W(\Xi, \cup)
\end{aligned}
$$

Generalized Multivariate Conjugate Linear Models

$$
\begin{aligned}
Y & \sim f(\pi) \\
\pi & =\phi^{-1}(\eta) \\
\eta_{\cdot j} & \sim N\left(\Lambda X_{\cdot j}, \Sigma\right) \\
\Lambda & \sim N(\Theta, \Sigma, \Gamma) \\
\Sigma & \sim I W(\Xi, u)
\end{aligned}
$$

## MULTINOMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION

C++, Eigen (+MKL)
$R$ Interface using Rcpp
Extensively Unit Tested against
Independent Implementations

## MULTINOMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION



C++, Eigen (+MKL)
$R$ Interface using Rcpp
Extensively Unit Tested against Independent Implementations

## MULTINOMIAL LOGISTIC NORMAL MODELS - BUT FAST



Benchmarking - Kim Roche

## MULTINOMIAL LOGISTIC NORMAL MODELS - BUT FAST



## Efficient

~ 5 orders of magnitude faster than HMC
~ 1-2 orders of magnitude faster than Variational Bayes (VB)

Benchmarking - Kim Roche

## MULTINOMIAL LOGISTIC NORMAL MODELS - BUT FAST



Benchmarking - Kim Roche

## Efficient

~ 5 orders of magnitude faster than HMC
~ 1-2 orders of magnitude faster than Variational Bayes (VB)

## Accurate

- Point Estimation Accuracy (estimating posterior mean) is nearly perfect over all tested conditions (in contrast VB breaks down when many taxa)
- Uncertainty quantification (estimating posterior variance) only found to break down when $>93 \%$ zeros in dataset. (in contrast VB breaks down often)

arXiv.org > stat > arXiv:1903.11695

Statistics > Methodology

## Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes

Justin D. Silverman, Kimberly Roche, Zachary C. Holmes, Lawrence A. David, Sayan Mukherjee

(Submitted on 27 Mar 2019 (v1), last revised 1 Apr 2019 (this version, v3))
Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of sequence count data (e.g., microbiome or gene expression data) due to th complex covariance structure. However, existing implementations of MLN models are limited to handling small data sets due to the non-conjugacy of the mı introduce MLN models which can be written as marginally latent matrix-t process (LTP) models. Marginally LTP models describe a flexible class of generalize series models. We develop inference schemes for Marginally LTP models and, through application to MLN models, demonstrate that our inference schemes a magnitude faster than MCMC.

## ACKNOWLEDGEMENTS

Wife and
Collaborator (MERCK Biostatistics)
Rachel Silverman
University of Montana Alex Washburne NYU
Jamie Morton
UCLA
Liat Shenhav
Eran Halperin

Duke University
Lawrence David
Sayan Mukherjee
Kim Roche
Rachael Bloom
Heather Durand
Sharon Jiang
Brianna Petrone
Zach Holmes
Jeff Letourneau
Max Villa
Kevin Zhu
Eric Dallow
U. de Girona

Vera Pawlowsky-Glahn
U. de Catalunya

Polytechnic
Juan Jose Egozcue
University of Western Ontario
Greg Gloor

University of Notre Dame Johannes R Björk Elizabeth Archie

## STRAY / MARGINALLY LATENT MATRIX-T PROCESSES

## BUT WHAT ABOUT THE CONDITIONALS?

Generalized Multivariate
Conjugate Linear Models

$$
\begin{aligned}
Y & \sim f(\pi) \\
\pi & =\phi^{-1}(\eta) \\
\eta_{\cdot j} & \sim N\left(\Lambda X_{\cdot j}, \Sigma\right) \\
\Lambda & \sim N(\Theta, \Sigma, \Gamma) \\
\Sigma & \sim I W(\Xi, u)
\end{aligned}
$$

This is just the Solution to Bayesian
Multivariate Linear Regression

```
\(v_{N}=v+N\)
\(\Gamma_{N}=\left(X X^{T}+\Gamma^{-1}\right)^{-1}\)
\(\Lambda_{N}=\left(\eta X^{T}+\Theta \Gamma^{-1}\right) \Gamma_{N}\)
\(\Xi_{N}=\Xi+\left(\eta-\Lambda_{N} X\right)\left(\eta-\Lambda_{N} X\right)^{T}+\left(\Lambda_{N}-\Theta\right) \Gamma^{-1}\left(\Lambda_{N}-\Theta\right)^{T}\)
\(p(\Sigma \mid \eta, X)=I W\left(\Xi_{N}, v_{N}\right)\)
\(p(\Lambda \mid \Sigma, \eta, X)=N\left(\Lambda_{N}, \Sigma, \Gamma_{N}\right)\).
```


## STRAY / MARGINALLY LATENT MATRIX-T PROCESSES

## BUT WHAT ABOUT THE CONDITIONALS?

Generalized Multivariate
Dynamic Linear Models

$$
\begin{aligned}
Y & \sim f(\pi) \\
\pi & =\phi^{-1}(\eta) \\
\eta_{t}^{T} & =F_{t}^{T} \Theta_{t}+v_{t}^{T}, \quad v_{t} \sim N\left(0, \gamma_{t} \Sigma\right) \\
\Theta_{t} & =G_{t} \Theta_{t-1}+\Omega_{t}, \quad \Omega_{t} \sim N\left(0, W_{t}, \Sigma\right) \\
\Theta_{0} & \sim N\left(M_{0}, C_{0}, \Sigma\right) \\
\Sigma & \sim I W(\Xi, u)
\end{aligned}
$$

B.2.1 Filtering Recursions for MDLM Model
(1) Posteriors at $t-1$ :

$$
\begin{aligned}
p\left(\Sigma \mid H_{t-1}^{T}\right) & \sim I W\left(\Xi_{t-1}, v_{t-1}\right) \\
p\left(\Theta_{t-1} \mid \Sigma, H_{t-1}^{T}\right) & \sim N\left(M_{t-1}, C_{t-1}, \Sigma\right)
\end{aligned}
$$

(2) Priors at $t$ :

$$
\begin{aligned}
a_{t} & =G_{t} m_{t-1} \\
R_{t} & =G_{t} C_{t-1} G_{t}^{T}+W_{t} \\
p\left(\Sigma \mid H_{t-1}^{T}\right) & \sim I W\left(\Xi_{t-1}, v_{t-1}\right) \\
p\left(\Theta_{t-1} \mid \Sigma, H_{t-1}^{T}\right) & \sim N\left(a_{t}, R_{t}, \Sigma\right)
\end{aligned}
$$

(3) One-step ahead forecast at $t$

$$
\begin{aligned}
& f_{t}^{T}=F_{t}^{T} a_{t} \\
& q_{t}=\gamma_{t}+F_{t}^{T} R_{t} F_{t} \\
& p\left(\Sigma \mid H_{t-1}^{T}\right) \sim I W\left(\Xi_{t-1}, v_{t-1}\right) \\
& p\left(\Theta_{t-1} \mid \Sigma, H_{t-1}^{T}\right) \sim N\left(f_{t}, q_{t} \Sigma\right) \\
& e_{t}=\eta_{t}^{T}-f_{t}^{T} \\
& S_{t}=\frac{R_{t} F_{t}}{q_{t}} \\
& m_{t}=a_{t}+S_{t} e_{t}^{T} \\
& C_{t}=R_{t}-q_{t} S_{t} S_{t}^{T} \\
& v_{t}=v_{t-1}+1 \\
& \Xi_{t}=\frac{1}{v_{t}}\left[v_{t-1} \Xi_{t-1}+\frac{e_{t} e_{t}^{T}}{q_{t}}\right] \\
& p\left(\Sigma \mid H_{t-1}^{T}\right) \sim I W\left(\Xi_{t}, v_{t}\right) \\
&\left.\Theta_{t-1} \mid \Sigma, H_{t-1}^{T}\right) \sim N\left(m_{t}, C_{t}, \Sigma\right)
\end{aligned}
$$

(4) Posterior at $t$ :
B.2.2 Simulation Smoothing Recursion

The recursions provided here follow directly from Prado and West [39, p. 268 (1) Sample $\Sigma \sim I W\left(\Xi_{T}, v_{T}\right)$ and then $\Theta_{T} \sim N\left(M_{t}, C_{t}, \Sigma\right)$.
(2) For each time $t$ from $T-1$ to 0 , sample $p\left(\Theta_{t} \mid \Theta_{t+1}, H_{T}^{T}\right) \sim N\left(M_{t}^{*}, C_{t}^{*}, \Sigma\right)$ where

$$
\begin{aligned}
Z_{t} & =C_{t} G_{t+1}^{T} R_{t+1}^{-1} \\
M_{t}^{*} & =M_{t}+Z_{t}\left(\theta_{t+1}-a_{t+1}\right) \\
C_{t}^{*} & =C_{t}-Z_{t} R_{t+1} Z_{t}^{T} .
\end{aligned}
$$

## BENCHMARKING RESULTS




\# Taxa
\# Samples
\# Covariates


## NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME

$$
\begin{array}{rlrl} 
& f & =\prod_{t=1}^{T} \operatorname{Multinomial}\left(\pi_{t}\right) \\
Y & \sim f(\pi) & \phi & =\text { ILR } \\
\pi & =\phi^{-1}(\eta) & B & =0_{D-1} \\
\eta & \sim T(U, B, K, A) & K_{i, j} & =\kappa^{2} \exp \left(-Y^{2}\left[d_{\text {phylo }}(i, j)\right]^{2}\right) \\
A_{t, s} & =a^{2} \exp \left(-\rho^{2}(t-s)^{2}\right)
\end{array}
$$

## LATENT MATRIX-T PROCESSES

## NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME



