JUSTIN D. SILVERMAN

NOW:

MEDICAL SCIENTIST TRAINING PROGRAM COMPUTATIONAL BIOLOGY AND BIOINFORMATICS DUKE UNIVERSITY

SOON: COLLEGE OF INFORMATION SCIENCE AND TECHNOLOGY DEPARTMENT OF MEDICINE PENN STATE

SCALABLE BAYESIAN MULTINOMIAL LOGISTIC-Normal Models for the analysis of Sequence count data

DATA COLLECTION AND SAMPLE PROCESSING

D	NA Extr CR Amp	action	n	Sequencing
	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Sampla 9	01	00	70	

COMPOSITION: A CONTROVERSIAL TOPIC

THE DATA IS "COMPOSITIONAL"

It's all relative: analyzing microbiome data as compositions Gregory B. Gloor PhD ^a $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Jia Rong Wu BSc ^a, Vera Pawlowsky-Glahn PhD ^b, Juan José Egozcue PhD ^c

Microbiome Datasets Are Compositional: And This Is Not Optional

🔝 Gregory B. Gloor^{1*}, 🖻 Jean M. Macklaim¹, 🚬 Vera Pawlowsky-Glahn² and 🌉 Juan J. Egozcue³

Susan Holmes @SherlockpHolmes · 5 Apr 2018 Replying to @timtriche @samclifford and 2 others

Absolutely not, microbiome data are not **compositional** and those methods don't apply, although it does apply to geostat data and other situations when one has a whole of exactly the same size. In microbiome data you have to control for different amounts of bacteria.

 \sim

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 9	01	00	72	

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 9	01	00	72	

Row Sums are known to be arbitrary

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 9	01	00	70	

Row Sums are known to be arbitrary

Common practice is to "normalize" (convert to **percentages** by dividing by row totals)

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 9	01	00	70	

Row Sums are known to be arbitrary

Common practice is to "normalize" (convert to **percentages** by dividing by row totals)

Percentages = Relative Abundances = Compositions

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 0	01	00	70	

Row Sums are known to be arbitrary

Common practice is to "normalize" (convert to **percentages** by dividing by row totals)

Percentages = Relative Abundances = Compositions

B+L+R=k And all Positive

	Species 1	Species 2	Species 3	Sp
Sample 1	23	53	2	
Sample 2	69	64	70	
Sample 3	33	100	68	
Sample 4	5	63	57	
Sample 5	76	80	46	
Sample 6	58	7	37	
Sample 7	10	87	32	
Comple 9	01	CTOBACI	T ²	

Row Sums are known to be arbitrary

Common practice is to "normalize" (convert to **percentages** by dividing by row totals)

Percentages = Relative Abundances = Compositions

B+L+R=k And all Positive

Example of problem: If B goes up, L+R must go down

HOW DO YOU DEAL WITH COMPOSITION?

ALR
$$(\mathbf{x}, \mathbf{y}) = \left(\log \frac{L}{R}, \log \frac{B}{R}\right)$$

CLR $(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \left(\log \frac{L}{(LBR)^{1/3}}, \log \frac{B}{(LBR)^{1/3}}, \log \frac{R}{(LBR)^{1/3}}\right)$

A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

$$\log\frac{0}{x} = -\infty$$

A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

$$\log \frac{0}{x} = -\infty$$
$$\log \frac{x}{0} \dots \text{Oh Shit...}$$

ZEROS AND COUNTING

OTHER SIDE OF THE AISLE

Following

 \sim

Replying to @tpq__ @ledflyd and 3 others

Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

	4 Mixture Models Modern Statistics for Modern Biology
=;	huber.embl.de

The data is count data

A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

ZEROS AND COUNTING

OTHER SIDE OF THE AISLE

Following

 \sim

Replying to @tpq__ @ledflyd and 3 others

Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

	4 Mixture Models Modern Statistics for Modern Biology
=,	huber.embl.de

The data is count data

A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

Model Random Counting (e.g., negative binomial or Poisson)

ZEROS AND COUNTING

OTHER SIDE OF THE AISLE

Following

 \sim

Replying to @tpq__ @ledflyd and 3 others

Thom, The problem is changing what the data are, the data come as counts, then a transformation is performed, but information is lost, you can't change what the data are, you can talk about transformed data and estimates of parameters, maybe see:

	4 Mixture Models Modern Statistics for Modern Biology
=	huber.embl.de

The data is count data

A zero count can be because a taxa (e.g., species) had low, but non-zero, abundance.

Model Random Counting (e.g., negative binomial or Poisson)

Yet often models each taxa as independent.

VIEWING AS RANDOM SAMPLING

RANDOM SAMPLING

Adapted from Hamady. et al., *Nature Methods*, 2008

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

EXTRACTING MORE INFORMATION FROM COUNTS

Samples	1	2
Taxa 1	40	0
Taxa 2	0	0
Taxa 3	100	1

Taxa 1

BAYESIAN MULTINOMIAL MODELS REFLECT INTUITION WE WANT

Taxa 2

MULTINOMIAL-LOGISTIC NORMAL

 $Y \sim \text{Multinomial}(\pi)$ $\pi \sim \text{Logistic Normal}(\rho, \Xi)$

 $egin{aligned} Y &\sim \mathsf{Multinomial}(\pi) \ \pi &= \mathsf{ILR}^{-1}(\eta) \ \eta &\sim \mathsf{Multivariate} \; \mathsf{Normal}(\mu, \Sigma) \end{aligned}$

- •Handles Zeros and Competition-to-becounted
- •Allows positive and negative covariation between taxa
- Models Multiplicative Errors

MODELING TIME-EVOLUTION

INFERENCE

THE COMPUTATIONAL BOTTLENECK

10 Taxa with **650 Samples** As measured by Time to Effective Sample size of 2000

Metropolis-within-Gibbs → >2 months

Now on order of **milliseconds to seconds**.

Can even scale to 5K x 20K , ~ 1.4 days run-time

/

/

MARGINALLY LATENT MATRIX-T PROCESSES MODELS

MARGINALLY LTP MODELS

MATRIX NORMAL PROCESS

MATRIX T-PROCESS

LATENT MATRIX-T PROCESS (LTP)

AN EXAMPLE OF A MARGINALLY LTP MODEL

Multinomial Logistic Normal Process $\begin{array}{ll} Y_t \sim \mathsf{Multinomial}(\pi_t) & \quad \text{Count Noise} \\ \pi_t = \mathsf{ILR}^{-1}(\eta_t) & \quad \\ \eta_t \sim \mathsf{N}(M_t, \Sigma) & \quad \\ \mathsf{M} \sim \mathsf{N}(\mathsf{O}, \Sigma, \Gamma) & \quad \\ \Gamma_{t,s} = \mathsf{RBF}(\mathsf{t}, \mathsf{s}) & \quad \\ \mathsf{S} \sim \mathit{IW}(\Xi, \mathit{U}) & \quad \\ \end{array} \end{array}$

FOR TIME-SERIES ANALYSIS

A FEW MORE EXAMPLES

Generalized Multivariate Dynamic Linear Models

$$\begin{split} & Y \sim f(\pi) \\ & \pi = \phi^{-1}(\eta) \\ & \eta_t^T = F_t^T \Theta_t + v_t^T, \quad v_t \sim \mathcal{N}(0, \gamma_t \Sigma) \\ & \Theta_t = G_t \Theta_{t-1} + \Omega_t, \quad \Omega_t \sim \mathcal{N}(0, W_t, \Sigma) \\ & \Theta_0 \sim \mathcal{N}(M_0, C_0, \Sigma) \\ & \Sigma \sim IW(\Xi, U) \end{split}$$

Generalized Multivariate Conjugate Linear Models

 $Y \sim f(\pi)$ $\pi = \phi^{-1}(\eta)$ $\eta_{\cdot j} \sim N(\Lambda X_{\cdot j}, \Sigma)$ $\Lambda \sim N(\Theta, \Sigma, \Gamma)$ $\Sigma \sim IW(\Xi, U)$

And Many More ...

MULTINOMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION

C++, Eigen (+MKL) R Interface using Rcpp

Extensively Unit Tested against Independent Implementations

MULTINOMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION

Gauss

C++, Eigen (+MKL) R Interface using Rcpp

Extensively Unit Tested against Independent Implementations

MULTINOMIAL LOGISTIC NORMAL MODELS – BUT <u>FAST</u>

Benchmarking - Kim Roche

MULTINOMIAL LOGISTIC NORMAL MODELS – BUT <u>FAST</u>

Benchmarking - Kim Roche

Efficient

- ~ 5 orders of magnitude faster than HMC
- ~ 1-2 orders of magnitude faster than Variational Bayes (VB)

MULTINOMIAL LOGISTIC NORMAL MODELS – BUT <u>FAST</u>

Benchmarking - Kim Roche

Efficient

- ~ 5 orders of magnitude faster than HMC
- ~ 1-2 orders of magnitude faster than Variational Bayes (VB)

Accurate

- Point Estimation Accuracy (estimating posterior mean) is nearly perfect over all tested conditions (in contrast VB breaks down when many taxa)
- Uncertainty quantification (estimating posterior variance) only found to break down when > 93% zeros in dataset. (in contrast VB breaks down often)

STRAY

Public on GitHub

Many many different multinomial logistic-normal models scalable and accurately.

arXiv.org > stat > arXiv:1903.11695

Statistics > Methodology

Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes

Justin D. Silverman, Kimberly Roche, Zachary C. Holmes, Lawrence A. David, Sayan Mukherjee

(Submitted on 27 Mar 2019 (v1), last revised 1 Apr 2019 (this version, v3))

Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of sequence count data (e.g., microbiome or gene expression data) due to th complex covariance structure. However, existing implementations of MLN models are limited to handling small data sets due to the non-conjugacy of the mu introduce MLN models which can be written as marginally latent matrix-t process (LTP) models. Marginally LTP models describe a flexible class of generalize series models. We develop inference schemes for Marginally LTP models and, through application to MLN models, demonstrate that our inference schemes a magnitude faster than MCMC.

ACKNOWLEDGEMENTS

BLOG

StatsAtHome.com

inschool4life

Wife and Collaborator (MERCK Biostatistics) Rachel Silverman

University of Montana

Alex Washburne

NYU

Jamie Morton

UCLA Liat Shenhav Eran Halperin

Duke University

Lawrence David Sayan Mukherjee **Kim Roche**

Rachael Bloom Heather Durand Sharon Jiang Brianna Petrone Zach Holmes Jeff Letourneau Max Villa Kevin Zhu Eric Dallow **U. de Girona** Vera Pawlowsky-Glahn

U. de Catalunya Polytechnic Juan Jose Egozcue

University of Western Ontario Greg Gloor

University of Notre Dame

Johannes R Björk Elizabeth Archie

BUT WHAT ABOUT THE CONDITIONALS?

Generalized Multivariate Conjugate Linear Models

$$Y \sim f(\pi)$$
$$\pi = \phi^{-1}(\eta)$$
$$\eta_{.j} \sim N(\Lambda X_{.j}, \Sigma)$$
$$\Lambda \sim N(\Theta, \Sigma, \Gamma)$$
$$\Sigma \sim IW(\Xi, U)$$

This is just the Solution to Bayesian Multivariate Linear Regression

$$v_N = v + N$$

$$\Gamma_N = (XX^T + \Gamma^{-1})^{-1}$$

$$\Lambda_N = (\eta X^T + \Theta \Gamma^{-1})\Gamma_N$$

$$\Xi_N = \Xi + (\eta - \Lambda_N X)(\eta - \Lambda_N X)^T + (\Lambda_N - \Theta)\Gamma^{-1}(\Lambda_N - \Theta)^T$$

$$p(\Sigma|\eta, X) = IW(\Xi_N, v_N)$$

$$p(\Lambda|\Sigma, \eta, X) = N(\Lambda_N, \Sigma, \Gamma_N).$$

BUT WHAT ABOUT THE CONDITIONALS?

Generalized Multivariate Dynamic Linear Models

$$\begin{split} \mathbf{Y} &\sim f(\pi) \\ \pi &= \boldsymbol{\phi}^{-1}(\eta) \\ \eta_t^T &= F_t^T \Theta_t + \mathbf{v}_t^T, \quad \mathbf{v}_t \sim N(0, \gamma_t \Sigma) \\ \Theta_t &= G_t \Theta_{t-1} + \Omega_t, \quad \Omega_t \sim N(0, W_t, \Sigma) \\ \Theta_0 &\sim N(M_0, C_0, \Sigma) \\ \Sigma &\sim IW(\Xi, U) \end{split}$$

B.2.1 Filtering Recursions for MDLM Model

(1) Posteriors at t - 1:

 $p(\Sigma | H_{t-1}^T) \sim IW(\Xi_{t-1}, \upsilon_{t-1})$ $p(\Theta_{t-1} | \Sigma, H_{t-1}^T) \sim N(M_{t-1}, C_{t-1}, \Sigma)$

(2) Priors at t:

$$a_t = G_t m_{t-1}$$

$$R_t = G_t C_{t-1} G_t^T + W_t$$

$$p(\Sigma | H_{t-1}^T) \sim IW(\Xi_{t-1}, v_{t-1})$$

$$p(\Theta_{t-1} | \Sigma, H_{t-1}^T) \sim N(a_t, R_t, \Sigma)$$

(3) One-step ahead forecast at t:

$$\begin{aligned} f_t^T &= F_t^T a_t \\ q_t &= \gamma_t + F_t^T R_t F_t \\ p(\Sigma | H_{t-1}^T) \sim IW(\Xi_{t-1}, \upsilon_{t-1}) \\ p(\Theta_{t-1} | \Sigma, H_{t-1}^T) \sim N(f_t, q_t \Sigma) \end{aligned}$$

(4) Posterior at t:

$$\begin{split} e_t &= \eta_t^T - f_t^T \\ S_t &= \frac{R_t F_t}{q_t} \\ m_t &= a_t + S_t e_t^T \\ C_t &= R_t - q_t S_t S_t^T \\ \upsilon_t &= \upsilon_{t-1} + 1 \\ \Xi_t &= \frac{1}{\upsilon_t} \left[\upsilon_{t-1} \Xi_{t-1} + \frac{e_t e_t^T}{q_t} \right] \\ p(\Sigma | H_{t-1}^T) &\sim IW(\Xi_t, \upsilon_t) \\ p(\Theta_{t-1} | \Sigma, H_{t-1}^T) &\sim N(m_t, C_t, \Sigma) \end{split}$$

B.2.2 Simulation Smoothing Recursion

The recursions provided here follow directly from Prado and West [39, p. 268] (1) Sample $\Sigma \sim IW(\Xi_T, v_T)$ and then $\Theta_T \sim N(M_t, C_t, \Sigma)$. (2) For each time t from T - 1 to 0, sample $p(\Theta_t | \Theta_{t+1}, H_T^T) \sim N(M_t^*, C_t^*, \Sigma)$ where

$$Z_t = C_t G_{t+1}^T R_{t+1}^{-1}$$

$$M_t^* = M_t + Z_t (\theta_{t+1} - a_{t+1})$$

$$C_t^* = C_t - Z_t R_{t+1} Z_t^T.$$

BENCHMARKING RESULTS

STRAY

Implementation + HMC Collapsed + LA Collapsed

NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME

 $Y \sim f(\pi)$ $\pi = \phi^{-1}(\eta)$ $\eta \sim T(\upsilon, B, K, A)$

$$f = \prod_{t=1}^{T} \text{Multinomial}(\pi_t)$$

$$\phi = \text{ILR}$$

$$B = 0_{D-1}$$

$$K_{i,j} = \kappa^2 \exp(-\gamma^2 [d_{\text{phylo}}(i,j)]^2)$$

$$A_{t,s} = a^2 \exp(-\rho^2 (t-s)^2)$$

NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME

Ruminococcaceae

