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SCALABLE BAYESIAN MULTINOMIAL LOGISTIC-
NORMAL MODELS FOR THE ANALYSIS OF
SEQUENCE COUNT DATA



FRAMING SEQUENCE COUNT DATA

DATA COLLECTION AND SAMPLE PROCESSING

Sample Collection DNA Extraction
and Storage PCR Amplification

Sequencing

Species 1 Species 2 Species 3 Sp:

Sample 1 23 53 2
Sample 2 69 64 70
Sample 3 33 100 68
Sample 4 5 63 57
Sample 5 76 80 46
Sample 6 58 7 37
Sample 7 10 87 32

CaAhnmanla

Adapted from Hamady. et al., Nature Methods, 2008



COMPOSITION

COMPOSITION: A CONTROVERSIAL TOPIC

It's all relative: analyzing microbiome data as compositions

Gregory B. Gloor PhD 2 & =, Jia Rong Wu BSc 2, Vera Pawlowsky-Glahn PhD ?, Juan José Egozcue PhD ©

Microbiome Datasets Are Compositional: And This
Is Not Optional

Gregory B. Gloor?, Jean M. Macklaim!, Vera Pawlowsky-Glahn? and ‘ Juan J. Egozcue’

NO ITS NOT

~ Susan Holmes @SherlockpHolmes - 5 Apr 2018 v
Replying to @timtriche @samclifford and 2 others

Absolutely not, microbiome data are not compositional and those methods
don’t apply,although it does apply to geostat data and other situations when one
has a whole of exactly the same size. In microbiome data you have to control for
different amounts of bacteria.

Q 2 n 1 QO 1 &5



COMPOSITION

CHALLENGES OF COMPOSITION

Species 1 Species 2 Species 3 Sp:

Sample 1 23 53 2
Sample 2 69 64 70
Sample 3 33 100 68
Sample 4 5 63 57
Sample 5 76 80 46
Sample 6 58 7 37
Sample 7 10 87 32

CAhnmanla O N4 on 70



COMPOSITION

CHALLENGES OF COMPOSITION

Row Sums are known to be arbitrary
Species 1 Species 2 Species 3 Sp:

Sample 1 23 53 2
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Sample 4 5 63 57
Sample 5 76 80 46
Sample 6 58 7 37
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Common practice is to "normalize"
(convert to percentages by dividing by row totals)
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Percentages = Relative Abundances = Compositions



COMPOSITION

CHALLENGES OF COMPOSITION

Row Sums are known to be arbitrary
Species 1 Species 2 Species 3 Sp:

Sample 1 23 53 2 . . N C
Common practice is to "normalize
Sample 2 69 64 70 o
Sample 3 33 100 - (convert to percentages by dividing by row totals)
Sample 4 5 63 57
Sample 5 76 80 46 Percentages = Relative Abundances = Compositions
Sample 6 58 7 37
Sample 7 10 87 32

~~~~~~ S B+L+R=k
And all Positive



COMPOSITION

CHALLENGES OF COMPOSITION

Row Sums are known to be arbitrary
Species 1 Species 2 Species 3 Sp:

Sample 1 23 53 2 . . .
Common practice is to "normalize"
Sample 2 69 64 70 o
Sample 3 33 100 - (convert to percentages by dividing by row totals)
Sample 4 5 63 57
Sample 5 76 80 46 Percentages = Relative Abundances = Compositions
Sample 6 58 7 37
Sample 7 10 87 32
LACTOBACILLU3 B+L+R=k
A And all Positive
K
@)
K
> RUMINOCOCCUS
K

Example of problem: If B goes up, L+R must go down

BACTEROIDES



COMPOSITION

HOW DO YOU DEAL WITH COMPOSITION?

/N -

B R



COMPOSITION

HOW DO YOU DEAL WITH COMPOSITION?

A o ol

B R

ALR O S <log AR, log g>

B (xy,2) = <log - > - >

1 1
(LBR)'/3’ " (LBR)'/3" ° (LBR)/3



ZEROS AND COUNTING

A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

log — = —0



ZEROS AND COUNTING

A PROBLEM WITH THE COMPOSITIONAL PERSPECTIVE

lo 9 = — 0O
g~ =
log ~ ... Oh Shit...

0



ZEROS AND COUNTING

OTHER SIDE OF THE AISLE

Susan Holmes m .
@SherlockpHolmes
Replying to @tpq__ @ledflyd and 3 others

Thom, The problem is changing what the
data are, the data come as counts, then a
transformation is performed, but information
is lost, you can't change what the data are, a taxa (e.g., species) had low,
you can talk about transformed data and but non-zero, abundance.
estimates of parameters, maybe see:

The data is count data

A zero count can be because

4 Mixture Models | Modern Statistics for Modern Biology
huber.embl.de

=D
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ZEROS AND COUNTING

OTHER SIDE OF THE AISLE

Susan Holmes m .
@SherlockpHolmes
Replying to @tpq__ @ledflyd and 3 others

Thom, The problem is changing what the
data are, the data come as counts, then a
transformation is performed, but information
is lost, you can't change what the data are, a taxa (e.g., species) had low,
you can talk about transformed data and but non-zero, abundance.
estimates of parameters, maybe see:

The data is count data

A zero count can be because

4 Mixture Models | Modern Statistics for Modern Biology

huber.embl.de Model Random Counting
=0 (e.g., negative binomial or Poisson)

Yet often models each taxa as independent.



BACKGROUND

VIEWING AS RANDOM SAMPLING

Sample Collection DNA Extraction

S °
and Storage PCR Amplification equencing

RANDOM SAMPLING RANDOM SAMPLING RANDOM SAMPLING

Adapted from Hamady. et al., Nature Methods, 2008



BACKGROUND

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

System 1 System 2



BACKGROUND

PROBLEM WITH MULTIVARIATE RANDOM SUBSAMPLING

System 1 System 2

RANDOM SAMPLING INDUCES A

COMPETITION TO BE COUNTED
(COUNT COMPOSITIONAL)




BACKGROUND

EXTRACTING MORE INFORMATION FROM COUNTS

Samples 1 2
Taxa 1 40 0
Taxa 2 0 0
Taxa 3 100 1




BACKGROUND

BAYESIAN MULTINOMIAL MODELS REFLECT INTUITION WE WANT

Posterior Data Prior
Taxa 3

Taxa 1 40

Taxa 2 0

Taxa 3 100

Taxa 1 Taxa 2

Taxa 1 4
Taxa 2 0
Taxa 3 10

Taxa 1 Taxa 2



BACKGROUND

MULTINOMIAL-LOGISTIC NORMAL

Y ~ Multinomial( )
T ~ Logistic Normal(p, =)

!

Y ~ Multinomial( )

m=ILR™"(n)
n ~ Multivariate Normal(u, 2)

ILR = "Isometric Log-Ratio" Transform

eHandles Zeros and
Competition-to-be-
counted

e Allows positive and
negative covariation
between taxa

*Models Multiplicative
Errors



BACKGROUND

MODELING TIME-EVOLUTION

Observed Counts Yt ™~ MUltanmlal(T[t)

T = ILR™' (1)
Addition of Technical Noise n, = F,0;+ v; vi ~ N(O, Vy)
True State witE Biological Noise By = G1B¢_1 + Wy w¢ ~ N(O, Wy)
Priors 8o ~ N(mo, Co)

V1,...,VT,W1,...,WTNP(€)

Silverman et al., Microbiome 2018
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INFERENCE

THE COMPUTATIONAL BOTTLENECK

10 Taxa with 650 Samples
As measured by Time to Effective Sample size of 2000
» Metropolis-within-Gibbs = >2 months

» Now on order of milliseconds to seconds.

Can even scale to SK x 20K, ~ 1.4 days run-time



INFERENCE

KEY IDEA  oa
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INFERENCE

KEY IDEA  oa

Marginally LTP Models

Latent Matrix-T
Process

(LTP) »

Marginal Conditional

(1) I have found that a huge class of models
have identical marginal forms

(2) I have found a highly accurate approximation for
this marginal form

(3) These models often have conditionals that are easy
to sample from.




MARGINALLY LATENT
MATRIX-T PROCESSES
MODELS

MARGINALLY LTP MODELS



MARGINALLY LTP MODELS

MATRIX NORMAL PROCESS

Covariance over Covariance over
Row space Column space

Matrix of X /
Observed Data

(Real Valued) e r' N N(B, K, A)

Mean
Matrix

Silverman JD, Roche K, et al. 2019. arXiv



MARGINALLY LTP MODELS

MATRIX T-PROCESS

Covariance over Covariance over
Row space Column space

Matrix of X /

Observed Data -

(Real Valued) I ~ T(U, B, K, A)

Degrees of
Freedom

Mean
Matrix

Silverman JD, Roche K, et al. 2019. arXiv



MARGINALLY LTP MODELS

LATENT MATRIX-T PROCESS (LTP)

Silverman JD, Roche K, et al. 2019. arXiv



MARGINALLY LATENT MATRIX-T PROCESSES

AN EXAMPLE OF A MARGINALLY LTP MODEL

Y: ~ Multinomial( 1)
Multinomial —1
Logistic Normal Iy = ILR (r)l‘)
Process
nt ~/ N(Mt, Z) Additional Noise

M ~ N(O, Z, r) rt,S — RBF(LS) Smoothed State
2 ~ IW(=, v)




MARGINALLY LATENT MATRIX-T PROCESSES

FOR TIME-SERIES ANALYSIS

Acidaminococcaceae Bacteroidaceae Desulfovibrionaceae Enterobacteriaceae

o
1.0 4 g

0.5

0.0
N AL

le}
05 e

Rikenellaceae



MARGINALLY LATENT MATRIX-T PROCESSES

A FEW MORE EXAMPLES

Generalized Multivariate
Dynamic Linear Models

Y ~ f(r)

m=¢"'(n)
ni = FOi+ v, vi~NO,yz)
O;= GO 1+ Q; Qi~ NO, W, Z)
©o ~ N(Mp, Cy, 2)

> ~ IW(=, v)

And Many More ...

Generalized Multivariate
Conjugate Linear Models

Y ~ f(r)

m=¢ '(n)

n.;~ N(NX}, 2)
A~ N®©,5,T)
S ~ IW(Z, v)

Silverman JD, Roche K, et al. 2019. arXiv



MARGINALLY LATENT MATRIX-T PROCESSES

MULTINGMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION

C++, Eigen (+MKL)
R Interface using Rcpp

Extensively Unit Tested against
Independent Implementations

Silverman JD, Roche K, et al. 2019. arXiv



MARGINALLY LATENT MATRIX-T PROCESSES

MULTINOMIAL LOGISTIC NORMAL MODELS WITH MARGINAL LAPLACE APPROXIMATION

C++, Eigen (+MKL)
R Interface using Rcpp

Extensively Unit Tested against
Independent Implementations

Justin Tukey Gauss

Silverman JD, Roche K, et al. 2019. arXiv



STRAY

MULTINOMIAL LOGISTIC NORMAL MODELS - BUT FAST

Benchmarking - Kim Roche

Silverman JD, Roche K, et al. 2019. arXiv



STRAY

MULTINOMIAL LOGISTIC NORMAL MODELS - BUT FAST

Efficient

~ 5 orders of magnitude faster than HMC
~ 1-2 orders of magnitude faster than Variational Bayes (VB)

Benchmarking - Kim Roche

Silverman JD, Roche K, et al. 2019. arXiv



STRAY

MULTINGMIAL LOGISTIC NORMAL MODELS - BUT FAST

Efficient

~ 5 orders of magnitude faster than HMC
~ 1-2 orders of magnitude faster than Variational Bayes (VB)

Accurate

> Point Estimation Accuracy (estimating posterior mean) is nearly

perfect over all tested conditions (in contrast VB breaks down
when many taxa)

Benchmarking - Kim Roche , o
» Uncertainty quantlflcatlon (estimating posterior variance) only

found to break down when > 93% zeros in dataset. (in
contrast VB breaks down often)

Silverman JD, Roche K, et al. 2019. arXiv



STRAY

Public on GitHub

STRAY

Many many different
multinomial logistic-normal
models scalable and accurately.

arXiv.org > stat > arXiv:1903.11695

Statistics > Methodology

Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes

Justin D. Silverman, Kimberly Roche, Zachary C. Holmes, Lawrence A. David, Sayan Mukherjee

(Submitted on 27 Mar 2019 (v1), last revised 1 Apr 2019 (this version, v3))

Bayesian multinomial logistic-normal (MLN) models are popular for the analysis of sequence count data (e.g., microbiome or gene expression data) due to th
complex covariance structure. However, existing implementations of MLN models are limited to handling small data sets due to the non-conjugacy of the mt
introduce MLN models which can be written as marginally latent matrix-t process (LTP) models. Marginally LTP models describe a flexible class of generalize
series models. We develop inference schemes for Marginally LTP models and, through application to MLN models, demonstrate that our inference schemes al
magnitude faster than MCMC.



ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

Wife and

Collaborator

(MERCK Biostatistics)
Rachel Silverman

University of Montana
Alex Washburne

NYU
Jamie Morton

UCLA
Liat Shenhav
Eran Halperin

Duke University
Lawrence David
Sayan Mukherjee
Kim Roche
Rachael Bloom
Heather Durana
Sharon Jiang
Brianna Petrone
Zach Holmes
Jeff Letourneau
Max Villa

Kevin Zhu

Eric Dallow

@e’ StatsAtHome.com
, inschool4life

U. de Girona
Vera Pawlowsky-Glahn

U. de Catalunya
Polytechnic
Juan Jose Egozcue

University of Western
Ontario
Greg Gloor

University of Notre Dame
Johannes R Bjork
Elizabeth Archie



STRAY / MARGINALLY LATENT MATRIX-T PROCESSES

BUT WHAT ABOUT THE CONDITIONALS?

Generalized Multivariate This is just the Solution to Bayesian
Conjugate Linear Models Multivariate Linear Regression
vy =v+ N
Y f( l'[) Iy=(XXx"+r0 4!
= ¢_1 (r)) Ay = (X7 +0r-Hry
=N =24 (?7 — ANX)(n — ANX)T + (AN — @)F_I(AN - @)T
n;~ N(AX;Z) p(Sln. X) = IW(Ey vy)
A ~ N(@ z I—) p(A|E,n, X) = N(An,E,I'n).
Y Y

> ~ IW(Z, v)



STRAY / MARGINALLY LATENT MATRIX-T PROCESSES

BUT WHAT ABOUT THE CONDITIONALS?

B.2.1 Filtering Recursions for MDLM Model
(1) Posteriors at ¢t — 1:

P(E|HtT—1) ~IW(Z4-1,v4-1)
p(@t—l|EvH?—1) ~N(M;_1,Ciq,%)

Generalized Multivariate
Dynamic Linear Models

(2) Priors at t:

a; = Gymy_y

R, = GtCt—leﬂ + Wy
P(E|HtT—1) ~IW(Ei-1,v-1)
Y ~ f( n) p(©:-1[S, H 1) ~ N(a, Ry, %)
(3) One-step ahead forecast at ¢:

n=¢ '(n)

qr =Vt + FtTRtFt

T _ T T (SIH ) ~ IW (Zi-1,00-1)
nt T Ft @t _|_ vt ) Vt ~ N(07 ytz) p(®t_f|E,Hf_1)~N(ft,nt)
et — Gt@t_1 —|— Qt) Qt ~J N(O’ Wt) Z) (4) Posterior at t: o
Qo ~ N(My, Co, Z2) si=t

qt
my = a¢ + Ste?
z g IW(: U) CtZRt—Qthsz
’ Uy = Up_q + 1
T

_ 1 _ [en
St = |Vi-15¢-1 +
Ut qt

P(SIHE ) ~ IW (Z4, vr)
p(@t—1|2, HtT—l) ~ N(mt7 Cta E)

B.2.2 Simulation Smoothing Recursion

The recursions provided here follow directly from Prado and West [39, p. 268|
(1) Sample ¥ ~ IW (ZEp,vr) and then ©7 ~ N(M,, Cy, X).
(2) For each time ¢t from T — 1 to 0, sample p(0;|O41, HE) ~ N(M;,C;,Y) where
Zy = C,GlL R,
M{ = My + Zi(0r41 — ar41)
Ct* = Ct - ZgRt_}_lZ;r.



B HMC Uncollapsed B HMC Collapsed [ VB Collapsed B LA Collapsed

BUILDING A FRAMEWORK
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LATENT MATRIX-T PROCESSES

NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME

-
f= | | Multinomial(rz;)

vt S
_ 1 =
m=¢ (n) B=0p_1

n~ T(U, B, K, A) Ki,j — K exp(—Yz[dphylo(iaj)]z)

Ats = a® exp(—p°(t — 8)?)

Silverman JD, Roche K, et al. 2019. arXiv



LATENT MATRIX-T PROCESSES

NON-LINEAR TIME-SERIES MODEL FOR MICROBIOME

Acidaminococcaceae

Enterobactenaceae

Bacteroidaceae Desulfovibrionaceae

-2
-3
Fusobacteriaceae Lachnospiraceae Porphyromonadaceae Rikenellaceae
0.5 2
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1 ° P
-0.5 [5)
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